Expr ss Mail No. EV194225921US

PATENT APPLICATION OF

ALEXANDER E. ANDREEV
2774 Glen Firth Drive
San Jose, CA 95133
Citizenship: RUSSIA

IGOR A. VIKHLIANTSEV
1341 KINGFISHER WAY
SUNNYVALE, CA 94087
Citizenship: RUSSIA

VOJISLAV VUKOVIC
50 WASHINGTON STREET, APT. 9
SANTA CLARA, CA 95050
Citizenship: YUGOSLAVIA
ENTITLED

DATA STREAM FREQUENCY REDUCTION AND/OR
PHASE SHIFT

Docket No. 03-1634/L13.12-0247

10

15

20

25

-1-

DATA STREAM FREQUENCY REDUCTION
AND/OR PHASE SHIFT

FIELD OF THE INVENTION

This invention relates to signal conversion, and
particularly to conversion of signals for frequency
reduction and/or phase shifting.

BACKGROUND OF THE INVENTION

Digital circuits operate on bit signals having
high and low states, often represented by "1"s and
"0"s. The bit rate 1is referred to as the bit
frequency, or data frequency where the bits represent
data. In integrated circuit chips, it is common that
sequential circuits operate at different frequencies
(different clock rates) such that inputs of a second
circuit operating at one frequency receive outputs of
a first circuit operating at a different frequency.
Where the second circuit operates at a higher
frequency than the first circuit, it is quite simple
to convert low frequency data stream to a high
frequency data stream by simply inserting additional
O's into the 1low frequency stream. However, a
reversal of that conversion (i.e., to convert a high
frequency data stream to a low frequency data stream)
is not so easy.

Consider a circuit that operates at a givén
clock rate set by a clock signal, CLOCK, has data bus
carrying data bits, DATA, and a port carrying valid
bits, VALID, identifying whether a corresponding data

bit on the data bus represents real data. The number

10

15

20

25

-2-

of bits in VALID equals the number of clock cycles.
The VALID bit is true, or "1", when the associated
DATA bit on the data bus represents real data, and
false, or "0", when the DATA bit is not real data.
The density of a data stream containing DATA is the
number of appearances of 1's in VALID during some
time period, T, divided by the number of clock cycles
for that period. Thus the density is a number having
a maximum value of 1.0 representing a maximal density
when VALID = 1 on each clock cycle. Where the time
period T 1is fixed, the density may be expressed
simply as the number, DENS, of appearances of 1's in
the VALID signal during period T. Dividing DENS by
the number of clock cycles during period T results in
the actual density. For example, if there are 256
clock cycles in time period T and 205 of the VALID

bits are 1's, the density may be expressed as
DENS=205, which is a density of 20;556::08008‘

Considering the case of converting a high
frequency data stream to a low frequency data stream,
if the density of the high frequency data stream is
low enough, the conversion might be accomplished by
data compression, namely eliminating DATA bits from
the high frequency data stream having associated
VALID = 0 Dbits. For example, if a high frequency
data stream contains 10 DATA bits, 0110010011, over a
given period T, and the associated VALID bit stream
is 1110111011, DENS = 8, and the density of the bit
stream is 0.8. At high frequency fuyiga, T = 10/fyrcy.

10

15

20

25

-3-

This high frequency data stream might be converted to
a low frequency data stream by compressing the data
to remove invalid data Dbits, forming the 1low
frequency data stream containing as few as 8 data
bits, 01101011 having an associated VALID bit stream,
11111111, However, this type of conversion is
possible only if the density of the resulting low

frequency data stream does not exceed 1.0, 1i.e.,
DENS =< 8, meaning that fioy must be at least as great

as 0.8furen (frow = 0.8fyrcu) - If frow < 0.8fuee in the
example, frequency conversion by data compression
cannot be accomplished. Instead, it is common to
employ a de-serialization technique to split the high
frequency data stream into a plurality of low
frequency data streams which are then applied to the
output circuit.

Even if two signals have the same frequency,
they may phase-shifted from each other, particularly
if they employ different clock generators. In such a
case, there is a need to synchronize data streams.

The present invention is directed to converter
circuit that can convert a high frequency data stream
to a low frequency data stream and can correct for
phase shift between data streams.

SUMMARY OF THE INVENTION

In accordance with an embodiment of the present
invention, a frequency reduction or phase shifting
circuit has an input receiving an input data stream

having an input frequency and a representation of

10

15

20

25

desired output frequency. A splitter splits the
input data stream into a plurality of split signals
each at a frequency of the desired output frequency.
A plurality of catchers identify valid bits of each
respective split signal. A shifter shifts valid bits
identified by at least some of the catchers by a
predetermined number. An output provide an output
data stream at the desired output frequency.

One selected predetermined number operates the
circuit as a phase shifter; other predetermined
numbers identify a de-serialization level for
frequency reduction.

In some embodiments, the splitter also receives
a stream of validity bits identifying which bits of
the data stream are valid data. The splitter also
provides validity bits to the catchers to allow the
catchers to identify valid data to the shifter. The
splitter operates on a split factor that is
empirically derived based on the input and output
frequencies and density of valid data bits in the input
data stream.

In other embodiments, a process of frequency
reduction and/or phase shifting for data streams 1is
provided. In yet other embodiments, a computer program
code is provides to cause a computer or processor to
perform frequency reduction and/or phase shifting on a

data stream.

10

15

20

25

-5-

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of a signal conversion
circuit according to a presently preferred embodiment
of the present invention.

FIG. 2 1is a functional block diagram of a
splitter used in the circuit of FIG. 1.

FIG. 3 1is a functional block diagram of a
catcher used in the circuit of FIG. 1.

FIGS. 4 and 5, taken together, is a functional
block diagram of a terminal device used in the
circuit of FIG. 1.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Consider the case of a first stream at a high
frequency, furea, having a density so high that the
first stream cannot be converted to a lower
frequency, frow, by data compression without exceeding
an established maximal density of DATA bits in a data
stream. A-circuit according to the present invention
de-serializes the fyrey input stream to a k-wide stream
that will operate at the second clock frequency, frow,
where k > 1. Thus the present invention provides a
circuit architecture which reduces the high frequency
déta stream to a low frequency stream and de—
serializes the input stream to a k-wide stream. In
the case where k = 1, the circuit de-serializes an
input data stream to one having a selected phase
shift. Thus the present invention also provides

circuit architecture which shifts the phase of an

10

15

20

25

-6-

input data stream to synchronize the data stream to a
output clock.

In the example where the VALID bit stream
associated with the high frequency data stream is
1110111011, the data can be considered arranged in
data packets, with each packet being identified by
the ‘number of consecutive 1's in the VALID bit
stream. Hence in the example, the high frequency
data stream is arranged in packets of 3, 3 and 2
bits, respectively, whereas the low frequency data
stream is arranged in a single packet of 8 bits.

Consider a circuit operating at an input -clock
rate, inp_CLOCK, having an input data bus receiving a
bit stream, inp DATA, and an input port receiving
inp VALID bits. Inp VALID is true, or "1", when real
data appears on inp DATA. The density of the real
data, inp_DENS, is the average number of appearance
of 1's on inp VALID during some number of input clock
cycles, which for example may be 256 input clock
cycles (although any number of clock cycles may be
employed for defining inp DENS). The data stream may
be uniform. or not. The length of a data packet (the
number of consecutive 1's in inp VALID) is denoted by
burst depth. The frequency of inp CLOCK is dehoted
by inp frq and the frequency of out CLOCK is denoted
by out frq.

FIG. 1 is ' a block diagram of circuit
architecture for converting a data stream at an input

clock signal frequency, inp CLOCK, to an output clock

10

15

20

25

-7-

signal frequeﬁcy, out CLOCK. The circuit includes a
splitter 10 that receives inp CLOCK, as well as the
inp VALID and inp DATA streams. Splitter 10 splits
the input clock stream, inp CLOCK, into n split CLOCK
streams and splits the input data stream, inp DATA,
into n split DATA streams, for respective ones of n
catchers 12. The term n is a split factor that is
empirically derived for the specific circuit. For
example, one a suitable calculation for split factor
for the 256 input clock cycles might be a rounding up
to the nearest integer of:

split _ factor = 3.0 * inp_ Jrq *(znp_DENS) + 1+ burst _depth .
out _frq 256

Split_factor n = 2, because burst depth > 1.

Catchers 12 synchronize the plural split CLOCK
streams from splitter 10 to the output «clock
frequency of out CLOCK, which is the output clock
frequency. The n data bits from splitter 10 are
supplied by respective catchers 12 to shifter 14 at
the clock rate of out CLOCK. The n valid bits from
catchers‘ 12 are also supplied to shifter 16.
Shifters 14 and 16 cyclically shift indices of the
respective streams based on a de-serialization factor
k. The shifted streams are accumulated by k-terminal
20 to derive the output valid stream and k-wide data
sStreams.

The logic of splitter 10 is shown in greater
detail in FIG. 2. Splitter 10 includes an input bus

that receives the inp_DATA stream, an input port that

10

15

20

25

-8~

receives the inp VALID stream and output registers
that provide split DATA[i] and split CLOCK[i] output
streams, where 0 < i < n. For ease of explanation of
the logic illustrated in FIG. 2, splitter 10 also
includes n auxiliary registers circle[i]. The term
next _circle[i] identifies the output nets for each
index i. Although splitter 10 is herein described as
employing physical output and auxiliary registers,
the function described in aséociation with FIG. 2 may
be performed by a processor operating under the
control of suitable program code, without regard to
the physical attributes of the processor.

Upon receipt of the a first (i=0) inp CLOCK bit,
the n circle[i] registers are initialized to logical
0: circle[0]=0, circle[l1]=0,..,, circle[n-1]1=0. Upon
receipt of the a the next (i=1) inp CLOCK bit, the
net for index 0 is set to the negation of register
circle[n-1] and the net for index 1 is set to the
negation of register circle[0]:

next _ circle[0) = —circle[n —1]
next _ circle[1] = —circle[0],
where =~ denotes a negation. In the example,
next_circle[0]=1 and next circle[l]=1. Additionally,
values of enable bits en[0] and en[l] are logically
derived as
en[0] = (—circle[0].Q) AND inp VALID
en[1] = (circle[1].Q) AND inp VALID,
where .Q identifies the output of the respective

register. In the example,

10

15

20

25

-9-

en[0] 1 1
en[0] = 0, if inp VALID 0,
en(l] = 0, if inp VALID = 1,
en[l] =1 0
At step 202, the value of i is set to 2, and at

14

, if inp VALID

, if inp VALID .
step 204 the value of 1 is compared to the value of
the split factor (n). If i 1is smaller than the
split_factor, such as if n>3, then at step 206, the
net of index i is set to the output of the circle[i]
register,
next _ circle[i] = circle[i].Q,

and the value of enable bit en[i] is logically
derived as

en[i] = circle[i].Q AND inp VALID .
In the example, if n23,
0,
1,

en[2] =1, if inp VALID
en(2] = 0, if inp VALID

etc.

The value of i is then incremented at step 208
(i=i+l1) and the process returns to step 204. Thus,
the loop formed by steps 204-208 generate values for
the nets of successive indices i and successive bit
values for enable bits en[i] for each wvalue of
i=3,4,.., (n-1), whefe n>3.

If at step 204 the value of i is not smaller
than the split_factor, then the value of i is reset

to 0 at step 210. At step 212, if the value of i is

smaller than the split factor, such as if i#n, then at

step 214 the value of the split CLOCK[i] input bit to

10

15

20

25

-10-

is logically derived as the EXCLUSIVE-OR of the
output from the split CLOCK[i] register and enable
bit en[i}.

split _ CLOCK([i].D = split _CLOCK[i1.Q"enli],

.where ~ 1is EXCLUSIVE-OR, and .D 1is the register

input. For example, since split CLOCK[0] register
was initialized to 0, a "1" is supplied to the input
of the split CLOCK[0] register if inp VALID is "1";
otherwise, a "O" is supplied to the split CLOCKI[O0]
register.

The value of the split DATA[i] input bit is
logically derived as either the negation of enable
bit en[i] anded with the output from the
split DATA[i] register, or the enable bit en{i] anded
with the inp DATA bit.

split _ DATA[i].D = {(—en[i])AND split _ DATA[i].Q}
OR {en[i] AND inp DATA}.
In the example, the split DATA[O] bit will take the
value of the inp DATA[0] bit if inp VALID=1 or will
take the value 0 otherwise.

Additionally, the input to the circle([1]
register is logically derived as either the negation
of the inp VALID bit anded with the output of the
circle[i] register, or the inp VALID bit anded with
the value of the net of index 1i.

circle[i].D = {(—inp _VALID) AND circle[i].Q}
OR {inp _VALID AND next _circle[i]}.
In the example, for i=0 the output of the circle(0]
register will be 1 if inp VALID=1, or 0 otherwise.

10

15

20

25

-11-

At step 216 the value of i is incremented by 1
and the process loops back to step 212 to consider
the next value of 1i. If at step 212 the value of i
is not smaller than split factor n, such as if i=n,
the process continues to the next inp CLOCK cycle.

Consider the example of split-factor = n = 2,
and a data stream sequence of a0,al,a2,a3,a4,as,...
Assume also that bit a2 is not wvalid data, so the
inp VALID stream is 1,1,0,1,1,1,... Since n=2, there
are only two split DATA stream outputs, split DATA[O]
and split DATA[1l], and two split clocks,
split CLOCK[0] and split CLOCKI[1]. Since i=2 from
step 202, i is not smaller than n at step 204, so the
process omits the loop formed by steps 206 and 208.
At step 218, the value of en[0] is 1 (because
inp VALID=1), and the value of split DATA[O] is the
value of inp DATA[0]=a0. The value of split CLOCK[O0]
is 1. At the next input clock, i is incremented at
step 216 (i.e., to i=1). At step 214, inp VALID=1,
so split DATA[l]=al and split CLOCK[1]=1. At the
next input clock (i=2) with inp VALID=O0,
split_DATA[0]=0 and split CLOCK[0]=0. The process
continues through the input data stream so that
split DATA[O0]=a0,0,a4,.. and split DATA[1l}=al,a3,a5..,
split_CLOCK[0]1=1,0,1,.. and split CLOCK[1l]=1,1,1,...

Where n is some greater number, such as n=3,
there are n split DATA streams and split CLOCK
streams derived in the same manner, and the states of

the auxiliary registers and enable bits are

10

15

20

25

-12-

established by the loop of steps 204, 206 and 208.
Thus, where n=3 and for the example given where data
bit a2 is not valid, split DATA[O0]=a0,a3,..,
split DATA[l]=al,a4,.. and split DATA[2]=0,a5,.., and
split CLOCK[O0]=1,1,.., split CLOCK[1l]=1,1,.. and
split CLOCK[2]=0,1,... ’

FIG. 3 is a logical flow diagram of a catcher 12
that synchronizes the input data stream at a clock
rate split CLOCK[i] to clock rate out CLOCK. Input
to each catcher 12 are out CLOCK and the respective
split DATA[i] and split CLOCK[i]. Each catcher 12
includes a <clock value auxiliary register and a
counter, as well as a split DATA output register and
a catched valid output. To synchronize the input
data stream to out CLOCK, a value corresponding the
out CLOCK clock rate is input to the clock value
register. Upon receipt of the next out CLOCK Signal,
if the split_CLOCK rate is equal to the output of the
clock_value register at step 300, the counter is set
to 0 at step 302, and the split CLOCK rate 1is
established by the out_CLOCK rate in the clock_value
register.

If at step 300 the split CLOCK rate is not equal
to the out CLOCK rate set in the «clock value
register, the count in the counter is incremented at
step 304. At step 306, if the count in the counter
is equal to 1, then at step 308 split DATA is input
to the split DATA register, and the catched valid bit

10

15

20

25

-13-

is set to true or 1. Thus, the split DATA register
contains valid data.

If at step 306 the count in the counter is not
1, then at step 310 the decision is made as to
whether the count in the counter is 3. If the count
is not 3 (i.e., it is 2) the process outputs
catched DATA in the form of the split DATA in the
split_DATA register in synchronous with the value
established by the clock_value register, and the next
out_CLOCK signal increments the count in the counter
at step 306. With the count in the counter
incremented to 3, at step 312 the catched DATA
register and counter are reset to 0, the valid bit is
set to 0 and the split CLOCK rate is input to the
clock value register. At the next out CLOCK signal,
the counter 1is incremented to 1 and the process
continues.

Each shifter 14 and 16 simply shifts the indices
based on a value of SHIFT from terminal 18. More
particularly, shifter 14 receives the catched DATA
from each of the n catchers 12 to reassemble a data
stream having n bits shifted DATA[O],..,
shifted DATA[n-1]. The output of shifter 14 is a
shifted data stream of k valid data bits to terminal
18. Similarly, shifter 16 receives the catched VALID
bits from catchers 12 in the form
shiftedﬁVALID[O],m,shifted_VALID[n—l], and supplies a
shifted stream of k valid bits to terminal 18.

10

15

20

25

-14-

Each shifter 14, 16 cyclically (based on the
shift_factor n) shifts indices of the input array,
A[i] to the output array Z[i] based on the value of
SHIFT.

Z[i]= Ali + SHIFT % split _ factor],
where 0 < 1 < split factor. The number of
multiplexers in each shifter 14, 16 is

depth * split factor * width,
where depth is number of digits for SHIFT and width
is the width of the bus.

FIGS. 4 and 5, taken together, are a logical
flow diagram of terminal 18. Terminal 18 accumulates
k valid bits and then recalculates a new SHIFT (value
k) for shifters 14 and 16. Terminal 18 has k
outputs, which are outputs of k consistent catchers
12. Thus for shift = 0, terminal 18 provides outputs
of first k catchers, for shift = k the circuit's
outputs are outputs of next k catchers and so on.
Hence, the output is a k-wide data stream at
out CLOCK frequency

Terminal circuit 18 assigns the first k outputs
of the n data outputs from data shifter 14, and adds
value k to the shift. Thus for shift = 0 the

circuit's outputs are outputs of first k catchers 12,

for shift = k the terminal circuit outputs are
outputs of next k catchers and so on. Terminal 18
has k inputs tvalid[0], ..., tvalid[k-1] (first k

outputs of wvalid shifter 16), k input data buses
tdata[0],..., tdata[k-1] (first k outputs of data

10

15

20

25

-15-

shifter 14), wvalid count register, k data output
registers and a SHIFT output register. Terminal 18
also has k auxiliary registers data buf and a
cur_valid register.

At step 400, the contents of the valid_count
register and cur_valid register are initialized to 0,
i is set to 0, and the input to the SHIFT register is
set equal to its output. If, at step 402, i < k, the
DATA[i] output register is set to 0 and the input to
data_buf[i] register is set to its output at step
404, and i is incremented by 1 at step 406. The loop
formed by steps 402-406 is repeated until i is not
smaller than k (i.e., 1 = k).

Consider the case where k = 2 for block 408 in
FIG. 4. If at step 410 the valid count register is
1, then the cur_valid register is set to tvalid[0] at
step 412 and the process continues to step 418. If
at step 410 the wvalid count register is not contain
1, then at step 414 if valid count register contains
0 and if twvalid[1]! is not equal to 0, then the
cur_valid register is set to a sum of tvalid[0] and
tvalid[l] at step 416, and the process continues to
step 418. If at step 414 valid count is not 0 (i.e.,

is 2) or if tvalid([1]! is 0, the process continues to

step 418. Thus, for k = 2, block 408 provides an
output of cur_valid = 0 if either valid count # 0 or
if tvalid[0] = 0 (step 414), a cur value equal to
tvalid[0] if wvalid count = 1 (step 412), or a

cur_valid = tvalid(l] + 1 if wvalid count = 0 and

10

15

20

25

-16-

tvalid([0]! = 0 (where any tvalid[i] is one bit,
tvalid[l] = 1) (steps 414 and 416). Hence, for k = 2
and tvalid[i] being one bit, cur_valid may be either
0, 1 or 2.

At step 418 the value of cur valid from block
408 is added to valid count and to SHIFT to derive a

value plus value and a shift plus value,
respectively. If at step 420 cur value 1is not
greater than 0 (i.e., cur_value equals 0), the
process continues to step 422 (FIG. 5). If at step

420 cur_value is greater than 0, then if shift plus
is smaller than split factor at step 424, the value
of SHIFT is set to shift plus at step 426.
Otherwise, if shift plus is not greater than
split_factor, the value of SHIFT is set to shift plus
minus shift_factor at step 428.

The result of the loops of steps 420, 424, 426
and 428 is setting of a value of SHIFT as the value
initially established at step 400 (if cur value = 0),
the value of shift _plus (if cur value > 0 and
shift_plus < split factor) or the value of shift plus
plus split_factor (if cur_value > 0 and shift plus 2
split_factor). The value of SHIFT is supplied by
terminal 18 to shifters 14 and 16 (FIG. 1) as k.

Continuing the process of termination circuit 18
at FIG. 5, at step 422 1 is set to 0 and a loop
formed of steps 430, 432, 434 and 436 is followed to
set the output data register DATA[i] for each index i

until i = k. More particularly, at step 430, if i is

10

15

20

25

-17~

smaller than k, then at step 432 if cur valid is
greater than O and if valid plus equals k, the
content of the data buf register is input to the
applicable DATA[i] register at step 434, and the
value of i is incremented at step 436. On the other
hand, if at step 432 cur_valid is not greater than 0
(i.e., cur_valid=0) and/or if valid plus does not
equal k (valid_plus # k), the process steps directly
to step 4306.

When 1 is incremented to the value of k as
identified at step 430, then at step 438, i is again
set to 0 for another loop formed of steps 440-458.

More particularly, at step 440, if i is not smaller

than k (i.e., if i > k), then the process steps to the
next out CLOCK. If i is smaller than k, then at step
442 an index j is set to O. If at step 444, j is
smaller than or equal to i (not greater than i), a
decision step 446 identifies if the output of the
valid count register is equal to i - j and if
cur_value > 0. If the condition at step 446 is true,
then 1f at step 448 valid plus is equal to k, the
value of tdata[j] is input to data register DATA[i]
at step 450, where tdata[j] € DATA[i], and J < i, On
the otherAhand, if the condition at step 446 is true
and if at step 448 valid plus is not equal to k, then
if at step 452 valid_plus > i, data buf[i] is loaded
with tdata[j] at step 454.

If the condition at step 446 is false, or upon

establishing a value for DATA[i] at step 450 or a

10

15

20

25

18

value for data buf[i] at step 454, or if valid plus
is not greater than i (e.g., valid plus < i), index j
is incremented at step 456 and the process returns to

step 444 to determine if j < 1. If through the loop
formed by steps 446-454 index j is incremented at
step 456 so that j > i, then the process loops to
increment i at step 458 and return to step 440.

Consider the case of k = 2. Steps 440-458
perform the following functions: In a first stage
when valid count.Q = 0, three conditions can occur:

1. If both inputs tvalid[0] and tvalid[1l]
equal 1, cur valid = 2 and both inputs are
coupled to the outputs (DATA[O] = tdata[0] and
DATA[1] = +tdata[l]), and the process of the
first stage is repeated.

2. If tvalid[0] = 1 and tvalid[l] = O,
cur valid = 1 and tdata[0] is stored
(data buf[0] = tdata[0]), and the process goes
to the second stage (valid count = 1).

3. If tvalid[0] = 0, the process simply
stays in the present stage.

In a second stage when valid count.Q = 1,
cur_valid = tvalid[0], and the states of tvalid[O0]}]
and tdata[0] are considered:

1. If tvalid[0] = 1, (cur _valid = 1),
input data tdata[0] is output DATA[1l] (DATA[1l] =
tdata[0]) and the process advances to the first

(or next) stage.

10

15

20

25

-19-

2. If tvalid[0] = 0 (cur_valid = 0), the
process remains in the present stage.

Hence, when in a given stage M, M real values
are accumulated on data buf, and when k values are
accumulated, they are output. In the process of
steps 440-458, as long as j is not greater than i (in
which case i1 is incremented to be greater than j)
index j 1is either i or i-1. Consequently, for a
current stage for index i, tdatalj] is either DATA[i]
or DATA[i-1]. If tdatalj] is DATA[i-1], it had been
stored as buf_datal[i] in the prior stage.

It will be appreciated, that additional stages

are necessary for other values of k. Thus, in the
description given for the second stage, if
tvalid[0] = 1 and DATA[1] = tdatal[0], for k > 2 the

process advances to the next stage, rather than to
the first stage.

The present invention thus provides a circuit
for converting high frequency data streams to 1low
frequency and for phase matching a data stream to a
clock of a sequential circuit. The circuit comprises
a SPLITTER circuit that splits the incoming data
stream into a plurality of n split data streams at
the output phase and frequency, n CATCHER circuits,
two SHIFTER circﬁits, one for data and one for wvalid
bits, and one k_TERMINAL circuit. The splitter
operates on a split_factor, n, which is empirically
derived for the specific circuit. The de-

serialization 1level, k, identifies the width of the

10

15

20

-20-

output stream. The circuit is particularly
advantageous in that it can handle phase shifting
without frequency conversion by setting k = 1.

The invention also provides a process of
frequency reduction and/or phase shifting of a data
Stream. In one embodiment, the invention is carried
out in a computer or processor operating under
control of a computer readable program containing
code that 1is stored on a computer readable medium,
such as a recording disc, to cause the computer or
processor to carry out frequency reduction and/or
phase shift of a data stream.

Although the present invention has been
described with reference to preferred hembodiments,
workers skilled in the art will recognize that
changes may be made in form and detail without

departing from the spirit and scope of the invention.

	2003-09-04 Specification

